
Ma 341-002: Test II, systems of ODEs 

 

For full credit make sure to show all work.  If in doubt ask. 
 

The “magic” formula may be useful for certain problems on this exam. 
 

 
 

● CHOOSE ONE OF THE PROOF PROBLEMS 1-5, IF YOU DO MORE THAN ONE I DO NOT INTEND TO 

REWARD WITH ANY BONUS POINTS. PLEASE JUST WORK ONE THAT YOU LIKE. THANKS. 
 

SOLUTION: see the practice test II from Fall 2007 for all of the proofs in one place. Of 

course these are also scattered about the notes here and there as well. Full credit was 

obtained for complete arguments devoid of incorrect statements. 
 

(1.) [6pts] Show that  is a nonzero  solution to    if we require that  and 

  are constant with    and  .  You will need to use a  

theorem from linear algebra which states that   has more than one solution only if 

.  

 

(2.) [6pts] Show that if    is a solution to    then both  

  and    are also solutions. 

 

(3.) [6pts] Show that if   and    then 
 

 
 

Notice that we then have found how to extract two real solutions from the complex 

solution. I should mention that I assume here that    are all real, they have no  

. 

 

(4.) [6pts] Show that    is a solution to   if, 
 

 
 

Here we assume  is a fundamental matrix for the system. 

 

(5.) [6pts] Show that the matrix exponential is a fundamental matrix. That is show that 

 is invertible and it is a solution matrix for . 



PROBLEMS 6-10 ARE REQUIRED, YOU SHOULD ATTEMPT ALL OF THEM. 
 

(6.) [30pts] Rewrite the following system of differential equations in matrix normal form 
 

 
 

Then find the general solution using our eigenvalue/eigenvector technique. Finally, find 

the solution with  and  and write out the formulas for  and  

separately.   

SOLUTION: to begin we observe that the system is  with  

so we can calculate the characteristic equation . Explicitly, 
 

 

Use the quadratic equation to see that our eigenvalues are . Let 

us chose  to avoid ambiguity in what follows. Find the eigenvector,  
 

 
 

We could use either equation, I prefer the  equation since it is easy to 

solve and obtain  thus if we chose  we find, 
 

 
 

I made the last step so that I could identify that  and  where the “t” 

stands for transpose, it simply makes the row vectors into column vectors. We find the 

general solution using the result of problem 3, 
 

 
 

we were given that  so we should apply this to specify . Observe that 

since ,  and   our given initial condition says 

 

 

 

Consequently, .  Therefore, we find that 

 and  

 

 



 

(7.) [30pts] Given that 

 

find the general solution of  .  You may need to use the matrix exponential and 

the magic formula to construct certain parts of the general solution. 

 

SOLUTION: we begin by calculating the characteristic equation, 
 

 
 

Clearly the eigenvalues for this problem are .  Our next step is to find 

the eigenvectors, begin with the zero eigenvalue. Look for  such that 
 

. 
 

the equations  clearly are redundant with the third equation . 

What is missing ? An equation involving , so  is a free variable and we choose . 

Consequently an eigenvector with eigenvalue zero is  

 

Next, search for  such that 
 

 
 

We observe that the third row equation is just the second row equation multiplied by 3. It 

is thus sufficient to focus our attention on the first two rows. This suggest that  
 

 
 

it is convenient to take the free variable to be  here, lets choose   

 



We have a system of three differential equations and three unknown dependent variables. 

The general theory told us that the general solution is comprised of three linearly 

independent solutions. Clearly we will only be able to build two eigenvector-type 

solutions. So we are missing a piece. We need to find a generalized eigenvector of order 

two corresponding to the repeated eigenvalue. We impose the chain condition 

 which automatically gives us that  since  is an 

eigenvector with eigenvalue 3. 
 

 
 

Consequently, . We let  to obtain  

The choice  is allowed here because it does not result in forcing . We find 

that  There are many other choices which are equally valid. If you chose 

a different eigenvector for  that could make this part of the calculation look different 

from my solution as well, but again there are many correct solutions. They all return the 

same general solution. Our eigenvectors give us the two fundamental solutions, 
 

 
 

of course these can also be viewed as stemming from the matrix exponential if you prefer 

since  for any eigenvector  with eigenvalue . However, what follows 

necessarily involves more than just eigenvectors. Since  is a fundamental matrix for 

the given system of ODEs we have that  is a nontrivial solution of the system. Why? 

Because multiplication by  amounts to taking a linear combination of the columns of 

 which are (by problem 5) solutions. Our ODE is linear so the sum of solutions is 

again a solution. So there you have it,  is a solution. Moreover, it is not one of 

the two we found already. This becomes evident once we calculate it explicitly,  
 

 
 

Where I have used the “magic” formula and the fact that we constructed  to be a 

generalized eigenvector of order two satisfying the chain condition with . Thus the 

general solution is 

 

 

 

 

 

 



 

 

 

 

 

(8.) [30pts] Solve    given that  
 

 
 

SOLUTION: we calculate the characteristic equation and find our eigenvalues. 
 

 
 

Evidentally we will have no need for the matrix exponential in this problem because we 

have two distinct eigenvalues which will necessarily return two linearly independent 

eigenvectors. Lets find them. 
 

 
 

I chose , it is not the only option, but it works. Next, 
 

 
 

Again there are other choices, but mine works fine. So we find the fundamental solutions 

to the homogeneous ODE  are simply, 
 

 
 

Working towards finding , see problem 4. We form the fundamental matrix by 

concatenation of our solutions 
 

 
 

We can find the inverse of this matrix using the 2x2 formula for inverse, 
 

 
 

Its easy to check our work to see that .  

 

 

 



Now we find the particular solution using the result of problem 4.  
 

 
 

Therefore, the general solution is 
 

 

 

(9.) [5pts] Suppose that we have a system of differential equations in matrix form  

 for some constant matrix . In addition suppose that this system has solutions 

  and  .  What is the minimum size for such a system ? That is 

how big is the matrix at a minimum ?  
 

SOLUTION: First notice that the only way we can get a  is to have the eigenvalue 

 repeated at least once. Remember I mentioned several times that there always 

exists at least one eigenvector for each distinct eigenvalue. So in order for us to find  

as a solution (which comes from a generalized eigenvector) there must also be -type 

solution. Clearly these are linearly independent solutions, they are not constant multiples 

of one another.  
 

Second, in order for us to have  as a solution there must exist another 

solution of the form  because the solutions from complex eigenvalues always 

come in pairs (see problem 3 of this test). Here the eigenvalue was . It is an 

inescapable fact of algebra that complex roots of real polynomials always come in 

complex conjugate pairs. (otherwise when you foiled out the roots you’d find the real 

polynomial was not real) 
 

We could add more eigenvalues for some system with these solutions but we cannot take 

them away, the smallest system would be a 4x4. For example, you could convert the 4
th

 

order ODE  into a matrix ODE in normal form and it would 

possess solutions such as those given at the beginning of the problem. We must have a 

4x4 system in order to get 4 linearly independent solutions. 

 



 

(10.) [4pts] There are many systems of differential equations which correspond to a 

single higher order constant coefficient differential equation. For example, I constructed 

problem 7 of this test from the 3
rd

 order ODE . Is there a 

corresponding 2
nd

 order ODE for a 2x2 system    with solutions 
 

 
 

if so find that 2
nd

 order ODE, if not explain why not. 
 

SOLUTION: In short, no. The reason is as follows. If there were such a 2
nd

 order ODE it 

would have the eigenvalue  repeated twice. We know this because a system of n 

ODEs and the constant coefficient n-th order ODE to which it corresponds share the same 

algebraic characterization. I mean to say that the auxillarly equation and the characteristic 

equation are identical (see homework problem 9.5#41 solution on H87, the proof 

actually generalizes to cases with  but we only needed  for this question). 

Whether we view the problem as an n-th order ODE or a system of n first order ODEs we 

face the same algebra problem. So getting back to the question at hand we have the 

eigenvalue  repeated twice. We learned in the first third of this course that our 

solution would have the form . I argue that the appearance of the -term 

ruins our hopes of matching our given system . For the given system there are 

two eigenvectors;  and  and we already have by inspection two 

linearly independent solutions. For a 2x2 solution that is all we can find. There is no 

room for three linearly independent solutions in a two-dimensional problem. But to make 

the correspondence that is just what we would need, we need to have hope that our 

system had a generalized eigenvector that could generate -type terms.  

 

If I had only given  or  but not both then you could have constructed such a system. 

In fact, E3 on page 113 of my notes is just such a problem. 

 

As I write this solution I’m sure many of you think you have constructed such a system, 

but I’d wager a closer inspection of your solution will reveal that  are solutions for 

the  you calculated BUT that system does not in fact correspond to any 2
nd

 order 

constant coefficient ODE. You see the point of this problem was to explore why the class 

of matrix problems correspondent to n-th order ODEs is smaller than the general class of 

matrix problems. This is similar to the phase plane discussion where the phase plane 

problems stemming from Newton’s Law have very special properties that the more 

abstract phase plane problems do not generally possess. 

 


